David Wong

cryptologie.net

cryptography, security, and random thoughts

Hey! I'm David, cofounder of zkSecurity, research advisor at Archetype, and author of the Real-World Cryptography book. I was previously a cryptography architect of Mina at O(1) Labs, the security lead for Libra/Diem at Facebook, and a security engineer at the Cryptography Services of NCC Group. Welcome to my blog about cryptography, security, and other related topics.

← back to all posts

How to Backdoor Diffie-Hellman: quick explanation

blog

I’ve noticed that since I published the How to Backdoor Diffie-Hellman paper I did not post any explanations on this blog. I just gave a presentation at Defcon 24 and the recording should be online in a few months. In the mean time, let me try with a dumbed-down explanation of the outlines of the paper:

I found many ways to implement a backdoor, some are Nobody-But-Us (NOBUS) backdoors, while some are not (I also give some numbers of “security” for the NOBUS ones in the paper).

The idea is to look at a natural way of injecting a backdoor into DH with Pohlig-Hellman:

prime backdoor

Here the modulus \(p\) is prime, so we can naturally compute the number of public keys (elements) in our group: \(p-1\). By factoring this number you can also get the possible subgroups. If you have enough small subgroups \(p_i\) then you can use the Chinese Remainder Theorem to stitch together the many partial private keys you found into the real private key.

The problem here is that, if you can do Pohlig-Hellman, it means that the subgroups \(p_i\) are small enough for anyone to find them by factoring \(p-1\).

The next idea is to hide these small subgroups so that only us can use this Pohlig-Hellman attack.

CM-HSO

Here the prime \(n\) is not so much a prime anymore. We instead use a RSA modulus \(n = p \times q\). Since \(n\) is not a prime anymore, to compute the number of possible public keys in our new DH group, we need to compute \((p-1)(q-1)\) (the number of elements co-prime to \(n\)). This is a bit tricky and only us, with the knowledge of \(p\) and \(q\) should be able to compute that. This way, under the assumptions of RSA, we know that no-one will be able to factor the number of elements (\((p-1)(q-1)\)) to find out what subgroups there are. And now our small subgroups are well hidden for us, and only us, to perform Pohlig-Hellman.

There is of course more to it. Read the paper :)

← back to all posts blog • 2016-08-09
currently reading:
How to Backdoor Diffie-Hellman: quick explanation
08-09 blog
📖 my book
Real-World Cryptography is available from Manning Publications.
A practical guide to applied cryptography for developers and security professionals.
🎙️ my podcast
Two And A Half Coins on Spotify.
Discussing cryptocurrencies, databases, banking, and distributed systems.
📺 my youtube
Cryptography videos on YouTube.
Video explanations of cryptographic concepts and security topics.